

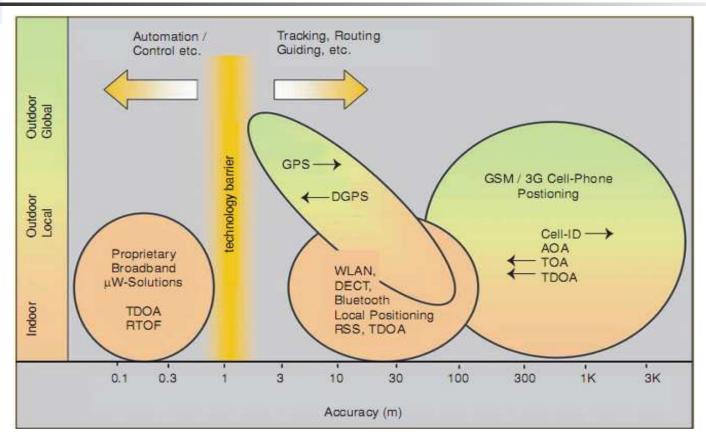
Andrei Papliatseyeu, Oscar Mayora University of Trento, Create-Net

Outline

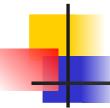
- Introduction
- Related work
- Challenges
- Project proposal
- Conclusion

Introduction (1/2)

Location-aware systems are used in


- Logistics, search-and-rescue
- Medical care, assisted living
- Tourist guides
- Higher level: activity recognition
 - Adaptive mobile services
 - More relevant web search
 - Activity monitoring for elderly

Introduction (2/2)


- From the location traces one can infer
 - Where the user is (position)
 - Whether the environment is familiar (personal place perception)
 - What the user is doing (activity)
 - What he is going to do (intentions)

Comparison of wireless positioning technologies

Figure from Vossiek et al. Wireless local positioning. IEEE Microwave Magazine, 4(4):77-86, p.80.

Related work (2/4)

- Positioning frameworks
 - Aggregate the advantages of different methods
 - Examples: PlaceLab¹, Location Stack²
 - Mostly use GPS and Wi-Fi, primitive GSM
 - Require laborious calibration
 - Only few can run on a mobile device

LaMarca et al. Place Lab: Device Positioning Using Radio Beacons in the Wild. Pervasive 2005, LNCS 3468, 116-133.

Hightower et al. The location stack: a layered model for location in ubiquitous computing. IEEE Workshop on Mobile Computing Systems and Applications, 2002, 22–28.

Related work (3/4)

- Recognition of personally important places (place extraction)
 - Different approaches
 - GPS signal loss in buildings¹
 - GSM Cell-ID transitions²
 - Wi-Fi+GSM fingerprints³
 - Time & distance thresholds
 - Binary decision on importance

[•] Ashbrook and Starner. Using GPS to learn significant locations and predict movement across multiple users. *Personal and Ubiquitous Computing*, 7(5):275–286, 2003.

Laasonen et al. Adaptive On-Device Location Recognition. Pervasive 2004, LNCS 3001, 287–304.

[•] Hightower et al. Learning and Recognizing the Places We Go. UbiComp 2005, LNCS 3660, 159–176.

Related work (4/4)

- Activity recognition by location
 - Examples: RealityMining¹, LifeTag²
 - Place implies activity (usually)
 - Modes of transportation: stationary, walking, driving³
 - Use only one technology, usually GPS
- Activity prediction
 - Rather young topic⁴
 - Basic methods and evaluations
- Eagle and Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4):255–268, 2006.
- Rekimoto et al. LifeTag: WiFi-Based Continuous Location Logging for Life Pattern Analysis. LoCA 2007, LNCS 4718, 35-49.
- Anderson and Muller. Practical Activity Recognition using GSM Data. Tech. Report CSTR-06-016, University of Bristol, 2006.
- Mayrhofer. An Architecture for Context Prediction. PhD thesis, Johannes Kepler University of Linz, Austria, 2004.

Challenges (1/2)

- Localization
 - Every single method has limitations (coverage, accuracy, power consumption, etc)
 - Sensors have various output formats
 - Location estimates are usually noisy
 - Calibration is necessary
- Place extraction methods
 - Choice of the "importance" threshold

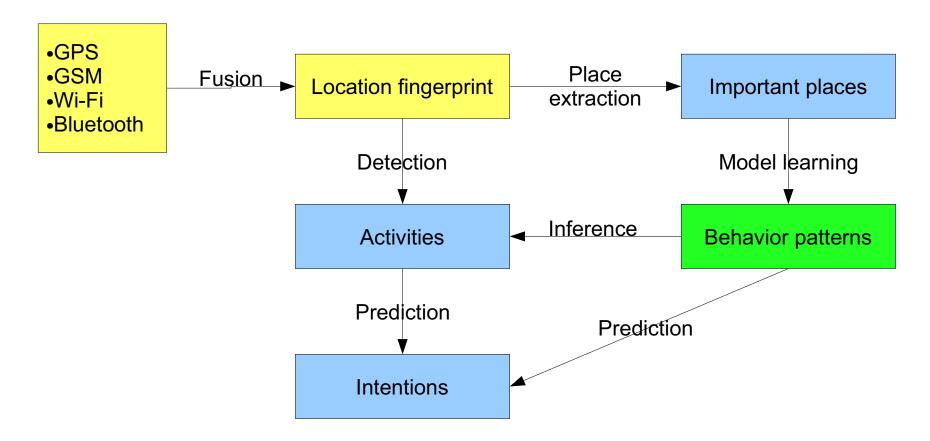
Challenges (2/2)

- Activity recognition and prediction
 - Currently outdoors or indoors only
 - Long-period and quasi-periodic patterns
 - "Schedule change" problem
- General: limited resources

The aim

- Improve the performance of activity recognition and prediction methods for mobile devices
 - Performance = accuracy, robustness, range of activities

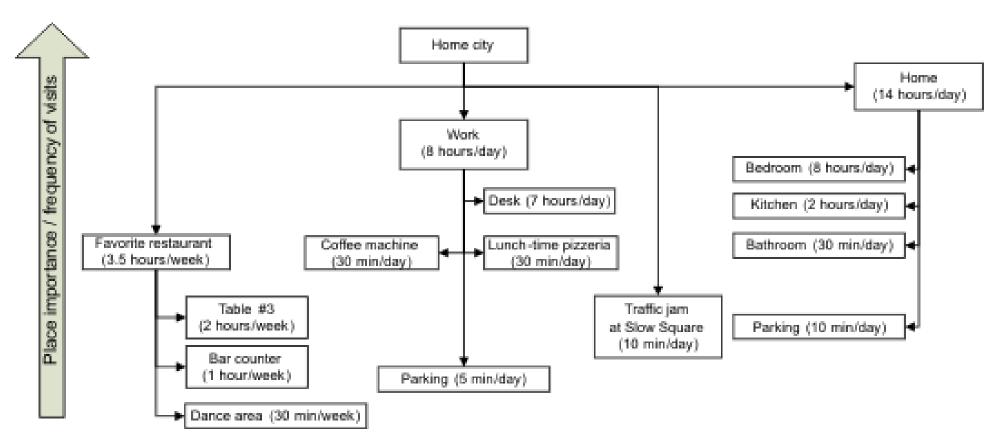
Objectives (1/2)


- Review the state of the art
- Develop a framework for accurate indoor and outdoor positioning
 - Using hardware of a smart phone
 - Consider privacy issues
- Analyze and develop place extraction methods
 - Optimize for multi-sensor positioning
 - Address "importance threshold" issue

Objectives (2/2)

- Analyze/develop activity recognition methods
 - Explore possible auxiliary data sources (time, day of week, recent calls, web services...)
 - Explore how domain knowledge can improve recognition
- Analyze/develop activity prediction methods
 - Consider long- and multi-period activities
 - Address "schedule change" problem

Proposed approach (1/3)



Proposed approach (2/3)

- Positioning framework
 - Multi-sensor (GPS, GSM, Wi-Fi, Bluetooth)
 - Hybrid coordinates (fingerprints)
 - No need for calibration
 - On-device computations
 - Secure and robust
- Place extraction
 - Importance rank instead of binary decision
 - Detection of "less important" places
 - No more false positives/false negatives
 - Enables coarse-grain estimations

Place importance ranking

Proposed approach (3/3)

- Activity recognition
 - Place implies activity
 - Use movement history/traces
 - Use wireless environment changes
- Activity/place prediction
 - Schedule change detection by error rate monitoring

Novelty / contribution

- Positioning framework
 - Ubiquitous coverage
 - No need for calibration
- Place extraction method
 - Importance ranking
- Activity recognition methods
 - New activities and better accuracy
- Activity prediction methods
 - Detection of schedule changes

- Separate components have already been demonstrated
- GSM positioning prototype is already done

Current state and future work

- Current state
 - Development of data collection application
- Future work
 - Real-life data collection
 - Development of analysis methods
 - Evaluation

Conclusion

- Recognize and predict mobile user activities from location traces
 - Using smart phone as a sensor
 - Both indoors and outdoors
 - Recognize personally important places
 - Detect user behavior changes
- Work in progress

Questions & Answers