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Abstract
This paper investigates feasibility of device-free indoor
localization using single passive receiver. Instead of local
wireless nodes sharing one frequency channel, this work
leverages multiple ambient FM radio stations.
Experimental results demonstrate feasibility of the
proposed approach and highlight the role of frequency
diversity for passive localization.
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Introduction
A large body of research has been dedicated to
localization of mobile devices carried by users. However,
there are situations when the user does not carry any
device (smart environments, assisted daily living).
Device-free localization (DFL) methods address the
challenge of localizing users without any wearable devices.



Radio-based DFL methods are based on effects of radio
wave interactions with human body (such as diffraction,
reflection, scattering), which ultimately result in
measurable changes of signal properties [3]. Current DFL
systems require deployment of multiple wireless devices
which actively transmit, receive and analyze radio
signals [2, 3, 6]. Due to radio spectrum regulations, these
devices are typically limited to only one or few frequency
channels in a narrow license-free band.

Figure 1: Test environment
layout. Antenna symbol indicates
location of the receiver.

This paper investigates feasibility of DFL with a single
receiver employing ambient FM radio stations. In contrast
to related work, the proposed system is completely passive
(since it uses ambient transmitters) and monitors multiple
radio channels simultaneously. Multi-frequency scanning is
the key feature of the system. The only previous work on
ambient FM-based DFL [4, 5] considered only one FM
station and found that localization was not possible [5]. In
the present paper, 11 FM radio stations are monitored
simultaneously with a software-defined radio [1].
Experimental results demonstrate that channel diversity
improves localization performance and makes sub-room
level localization with ambient stations possible.

The rest of the paper describes the proposed approach,
presents experimental results, and concludes with a
summary of the findings.

Single-receiver multi-channel DFL
State of the art DFL systems typically employ multiple
wireless devices (sensor nodes or Wi-Fi routers) installed
around the area of interest. The nodes communicate over
one shared radio channel and continuously monitor
strength of signals received from other nodes (RSSI).
When a person approaches the line between any two
nodes, their established RSSI readings change. With the

knowledge of node positions and their RSSI levels, user’s
location can be directly inferred.

This approach is not applicable to the single-receiver
passive DFL system, as the system cannot control ambient
transmitters nor does it know their locations. Instead, the
system exploits multipath radio signal propagation in
indoor environments, caused by reflections and
interference on walls, furniture and other large objects.
Multipath propagation leads to complex map of RSSI
distribution within indoor environment. Due to the spatial
and frequency diversity of ambient FM transmitters, RSSI
distribution maps are different for each frequency channel.

When a person enters the test area, he or she affects radio
propagation — in a different way at each frequency,
depending on environment properties and person’s
location. This leads to changes in the signals observed by
the DFL system receiver: RSSI readings increase or
decrease on particular channels. Machine learning
methods can then be employed to recognize locations by
their characteristic RSSI patterns, similarly to traditional
location fingerprinting methods.

Experimental evaluation
Figure 1 shows the layout of the test environment, a
typical apartment room in Luxembourg.

A software-defined radio based on Realtek RTL2832U [1]
has been employed to monitor the radio spectrum band
from 87 to 111 MHz and to acquire RSSI readings for
200-kHz wide channels. Each sample included 120
channels, of which only 11 active stations were selected
for further analysis. For each user location (user sitting at
the desk, sitting on the bed, lying in the bed, standing
near wardrobe, and being away), we recorded 50 samples
with 1-second interval. The data were preprocessed by



averaging groups of 5 consecutive samples into one, and
normalizing each channel’s RSSI readings to the range of
0 . . . 1. After preprocessing, there were ten 11-channel
samples associated with each user location (see Figure 2).

Data collection has been performed in four days. Every
day we acquired two datasets, with a 20-minute interval
between them. All experiments were performed around
1 a.m. in the night to minimize influence of neighboring
activities. In total, 8 datasets have been collected.

Figure 2: A sample of measured
RSSI values for different user
locations (one of the eight
collected datasets).

Visual analysis of the raw data in Figure 2 suggests that
each user location has an associated unique pattern of
RSSI distribution across channels. The figure also
supports the observation of Sigg et al. [5] that
single-channel measurements are not likely to provide
sufficient distinction between all locations.

In order to recognize locations by their RSSI patterns we
tested three classification methods: Gaussian processes,
k-nearest neighbor (kNN) with Euclidian distance, and
kNN with correlation between samples as a distance
measure. The latter provided best accuracy and thus was
used for all subsequent experiments.

Same-day vs. next-day performance
First experiments evaluated short-term recognition
accuracy. For each of the four same-day dataset pairs,
one dataset was used for training and the other one for
testing, and vice versa. Median accuracy of all tests was
85%. Table 1 presents the summarized confusion matrix.

The next experiment evaluated localization accuracy of a
system tested on the next day after training. Median
accuracy among all datasets was 78%. The averaged
confusion matrix for all tests is shown in Table 2.

Ground truth
Classifier
result ↓

empty desk bed-
lying

bed-
sitting

ward-
robe

empty 0.66 0.08 0.10 0 0.02
desk 0.01 0.90 0.02 0.01 0
bed-lying 0.08 0.02 0.68 0.04 0.04
bed-sitting 0.11 0 0.10 0.85 0.11
wardrobe 0.14 0 0.10 0.10 0.83

Table 1: Confusion matrix for same-day testing.

Ground truth
Classifier
result ↓

empty desk bed-
lying

bed-
sitting

ward-
robe

empty 0.62 0.08 0.12 0 0.05
desk 0.11 0.78 0.12 0.03 0.01
bed-lying 0.09 0.05 0.56 0.02 0.03
bed-sitting 0.04 0.08 0.05 0.83 0.09
wardrobe 0.14 0.01 0.15 0.12 0.82

Table 2: Confusion matrix for next-day testing.

The results indicate that while most of the locations could
be recognized with 78–90% accuracy, two states were
challenging. Firstly, empty room was often
indistinguishable from user standing near wardrobe.
Secondly, “lying in the bed” state was often confused with
the others. On one hand, both issues might be attributed
to relatively weak influence of user’s presence on radio
wave propagation near large piece of furniture. On the
other hand, the described localization approach heavily
depends on test environment specifics (layout, receiver
placement, FM stations location, frequency and
transmission power). These might lead to “blind spots”
where user’s presence has minimal impact on signal
propagation. Detailed understanding of these factors
requires further investigation.



Accuracy degradation with time
Wireless localization systems are sensitive to changes in
the environment (such as temperature, humidity,
movement of people, doors, furniture, other objects)
which lead to degradation of localization performance. A
system based on remote transmitters might also be
affected by changing weather conditions and movement of
outdoor objects.

Figure 3: Accuracy degradation
with time.

To evaluate temporal stability of the localization
performance, we trained and tested the system using
datasets separated by several days. Box-and-whisker plot
in Figure 3 presents summarized results for all the possible
dataset combinations. According to the results, three days
after the training the median localization accuracy
decreased from 85% to 65%. Nevertheless, even
worst-case results remained well above the baseline level
of 20% (probability of randomly guessing the correct
location from five alternatives). It should be noted that
accuracy degradation is not specific for the proposed
system only but rather is a common problem of wireless
localization systems and can be mitigated by periodic
re-training (either manual or automatic).

Number of channels

Figure 4: Accuracy dependence
on number of channels.

As mentioned earlier, wireless localization systems could
benefit from frequency diversity. Figure 4 shows
localization performance of the proposed system when
only a subset of available frequency channels is used.
When all 11 channels were employed, the system could
distinguish empty room and four sub-room level locations
with 85% accuracy. However, with 5 channels the
performance decreased to only 40%. Thus, the
experimental results confirm the initial intuition and prove
that additional frequency channels can considerably
improve localization accuracy.

Conclusion
This paper demonstrated feasibility of device-free
localization with a single passive receiver and multiple
ambient FM radio stations. The experimental results show
that frequency diversity plays an essential role in a DFL
system and can considerably improve localization
performance.

This work will continue with long-term performance tests
and feasibility study of fine-grained passive DFL.
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