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1. Introduction  

The methods of computer simulation have been proved as very powerful tools 

for the exploration of different complex processes [1]. They gain a considerable 

attention in recent years, when being used for adequate forecasting of the behaviour 

of explored systems under different external or internal conditions. Classical 

approximation methods are generally used for the analysis of well-known analytical 

expressions, which are far too simple to describe the real physical processes. For the 

correct interpretation of the experimental data computer simulation must be included 

in the process of data analysis. One of the forms of such application is a simulation-

based fitting (SBF) [1]. The idea of SBF is the approximation of experimental data by 

synthetic data obtained via simulation modeling. In comparison to standard analytical 

data fitting techniques, SBF has the advantage that it fits natural physical parameters 

of the system itself and gives a direct insight in how they affect the experimental 

characteristics of the system. 

However, in some cases it is not necessary to operate with a simulation model 

(or a "white box" model), which gives precise results but is far more computationally 

expensive than analytical approximation. For example, in SBF only parameters of the 

model are modified, when its structure holds constant. In such a case, it may be 

useful to perform a "black box" modeling, which still operates with real physical 

parameters but can be performed much faster. In the current work, it is proposed to 

use artificial neural networks (ANNs) [2] as "black box" simulators of physical 

processes. 

Two completely distinct cases are considered below: the neural simulation of 

deterministic physical processes, and ANN simulation of stochastic ones. 



2. Approximation of a deterministic process 

The global scheme of ANN utilization is shown in fig. 1. Here ANN is applied 

exactly in the same way as a simulation model: it transforms input parameters (7) into 

output values (8). The training procedure is rather obvious: the representative training 

set (2, 3) is generated by a special algorithm (1) and the network can be trained on it 

by a standard "back-propagation error" method [2]. 

 

Fig. 1. Standard scheme of ANN approximation of deterministic process. 

 

To generate a representative set of input parameters a kind of grid algorithm can 

be used. However, in this case the size of a training set should be known well before 

the training, because grid methods hamper the increase of parameter point (knots) 

density. Another algorithm was proposed in [3] and presented in fig. 2.  

 

 

Fig. 2. Proposed algorithm of knot generation (a) and the result for n=2 (b).  

Where n – dimensionality of the parametric space; N – the number of found knots. 
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The application of the scheme gives a uniform infill of the two-dimensional 

parameter space. Furthermore, the infill itself remains random and can easily be 

continued.  

The ANN approximation of a deterministic process was applied to study the 

resonance energy transfer [4] in complex membrane-protein systems and gave the 

increase of the SBF speed by the factor of 10
4 
[3]. 

 

3. Approximation of a stochastic process 

To simulate a stochastic processes two approach can be proposed. The first one 

– is to use a stochastic ANN (for example, Boltzmann machine). However, this area 

of ANN is not completely studied yet and there are unsolved problems in network 

structure determination and training. Another approach is application of standard 

feed-forward networks with slight modifications. To utilize a deterministic network 

for generation of a random signal one should put into it a source of randomness. 

Fortunately, it is possible to do without significant structural changes – the random 

signal can be given into ANN inputs. In fact, such a network operates as an abstract 

function which transfers the set of uniform random values {xi}⊂R to arbitrary 

distributed {yj}⊂Y.  

 

 

Fig. 3. Training of ANN for the approximation of stochastic signal. 
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It should be noted, that standard "back-propagation error" methods are not 

applicable to train ANN in this case. We propose the scheme shown in fig. 3. Each 

training pair is presented by a vector of input parameters pT (1) and a sufficiently long 

output random signal yT(t) (3). From yT(t) several statistical parameters are calculated: 

mean, standard deviation, estimation of probability density, minimal and maximal 

values. During training, parameters pT (1) together with a set of random vectors 

x(t)⊂R (5) are given to ANN which produce a sufficiently long random vector yann(t). 

For it the same statistical parameters are calculated (9). The weighted comparison of 

(4) and (9) gives the error of ANN. The ANN weight coefficients can be modified 

iteratively using one of standard stochastic training algorithm [2]. 

To test this methodology the random signal given by eq. 1 was successfully 

generated by a 3 layer perceptron with 4x4x1 neurons.  

y(t) = p1 ⋅ n
2
(t) + p2 , (1) 

where p1, p2 – constant parameters, n(t) – Gaussian stochastic signal with m=0, σ=1. 

Two uniformly distributed random signals were taken as {xi}. 

The proposed approach is applicable only for δ-correlated stochastic signals. 

Special transformations (convolution, sum) or ANN with feedback should be used. 
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