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Abstract—Homo sapiens is a common, even if often uncredited,
component of indoor positioning research. Despite the increasing
number of automatic benchmarking platforms, performance of
a positioning system is still typically evaluated by a graduate
student with a smartphone in their hand. Powered by the varying
levels of motivation, attention and spatial awareness, research
assistants gather data while walking along predefined paths or
visiting predefined locations. More importantly, however, these
people are in charge of establishing the ground truth which has
a direct impact on the final evaluation results.

In this paper, we look into the widespread tacit assumption
that human-based ground truth errors are negligibly small. Using
a custom laser-based positioning method with centimeter-level
accuracy, we experimentally invalidate the hypothesis of human
localization infallibility in a series of 378 measurements with 7
volunteers. In static tests with three types of visual references,
we observed human localization errors reaching values of 22 cm
(with floor and ceiling markers) and up to 36 cm (with en-
vironmental landmarks). Such displacements can easily be the
difference between the line-of-sight and radio-shadow locations
and thus strongly affect the measured performance of a wireless
positioning system.

The results of this work outline the limits of human-based
indoor positioning performance and highlight the importance of
correct implementation and reporting of ground truth method-
ology in indoor localization research.

Index Terms—Indoor positioning, ground truth, benchmark-
ing, fingerprinting, performance evaluation, human factors.

I. INTRODUCTION

Evaluation of an indoor positioning system requires the
knowledge of the ground truth established either by direct
observation or by an accurate reference positioning system.
However, research labs and universities often do not have
access to specialized benchmarking platforms such as [1], [2],
and the evaluation is performed by a graduate student with
a smartphone in their hand, who uses visual references to
establish the ground truth. The accuracy of such a human-
based indoor positioning system (HIPS) is typically assumed
to be perfect.

Since current indoor positioning systems start to reach the
one-meter accuracy milestone [3], inadequately established
ground truth (GT) may seriously affect the evaluation results of
the system under test. However, even well-described position-
ing experiments tend to provide surprisingly little details about
their ground truth estimation methodology [4], thus making it
impossible to assess the contribution of GT to the measured
localization performance of the presented system.

The aim of this paper is to evaluate the accuracy of the
human-based indoor positioning and to stress the importance
of adequate implementation and reporting of the ground truth
measurement methodology. We experimentally quantify the
human ability to accurately position smartphones in indoor
locations (test points) defined by visual references such as floor
and ceiling markers, or by generic environmental landmarks.

The contribution of this paper is three-fold. Firstly, we
present a method for manual centimeter-level indoor position-
ing using a laser rangefinder and analyze factors related to the
method’s accuracy. Secondly, we experimentally demonstrate
that HIPS performance is far from ideal, with the localization
error reaching 22 and 36 cm for floor&ceiling markers and
environmental landmarks, respectively. Finally, we discuss the
impact of the human factors on the HIPS performance and
suggest a method for improving the quality of HIPS-based
ground truth. Considering the popularity of the HIPS in indoor
localization research (including past formal competitions [5]),
the results of this study should be of interest for the whole
indoor positioning community.

The paper is organized as follows. Section II provides a re-
view of the related work and relevant GT referencing methods,
and further elaborates the motivation of the study. Sections III
and IV describe our methods, the GT measurement system
and the experimental setup. In turn, Section V presents the
results. Finally, Section VI summarizes the results, discusses
their implications for the field and outlines an approach for
augmenting HIPS performance.

II. BACKGROUND

No indoor positioning method is complete without an esti-
mation of its performance, which includes comparison of the
system’s output with the known ground truth (GT) data. The
GT can be provided by a more accurate reference positioning
system, or established as a predefined path or a set of discrete
points which are then visited by the test device. Despite the
key role of GT in the performance evaluation process, details
of the GT measurement methods are often only implied or
even neglected altogether in experimental reports [4].

There are a number of specialized benchmarking platforms
designed to evaluate indoor positioning systems. Robot-based
platforms with highly accurate reference systems enable au-
tomatic comparison of different localization methods with
minimal human effort. Some of these systems are summarized
in Table I. As follows from the table, the typical GT accuracy
of such systems is in the order of tens of centimeters.978-1-5090-2425-4/16/$31.00 c©2016 IEEE



TABLE I: Reference Positioning Systems and Benchmarking
Platforms for Indoor Localization

System Technology Accuracy
EVARILOS [1] Laser scanner & Vision 25 cm (average) [5]
RAWSEEDS [2] Laser scanner& Vision 17 cm (average)
Schmitt et al [6] Vision 6.7 cm (average)
UbiSense [7] UWB 15 cm (95%)
ALPS [8] Ultrasound 16 cm (average)

Unfortunately, automatic benchmarking solutions are not
always available for logistical or financial reasons. As a result,
evaluation of novel positioning methods is often delegated
to cost-efficient and readily available research assistants. Al-
though such human-based positioning systems (HIPS) were
likely never benchmarked themselves, an (arguably flawed)
twist of reasoning leads to a widespread unspoken assumption
that HIPS performance is ideal and any errors are negligible.

To the best of our knowledge, the validity of this assumption
has never been experimentally verified. However, according to
our own experience, placing the test device exactly into the
test location is a rather challenging task, especially when the
experimental sessions are repeated over the course of days or
weeks. The risk of inconsistent GT further increases when data
collection is performed by different people.

At a first glance, motivation for this study might seem
superficial. Given the typical Wi-Fi median localization ac-
curacy of several meters [9], any possible contribution of
GT imperfections would be negligible. However, in multipath
environments (such as indoors) radio waves are subject to
strong self-interference and small-scale variations [10], [11].
A deep radio shadow can be only few wave lengths away from
the line-of-sight reception. As a result, Wi-Fi received signal
strength (RSS) can significantly change even if the smartphone
is moved by only a few centimeters [11]. Therefore, even
small GT errors might lead to considerable differences in RSS
fingerprints and thus have a disproportionally large impact on
the measured localization performance.

In this study, we focus on HIPS’ performance in evalu-
ation of non-inertial positioning systems. Such systems are
tested predominantly in a stationary manner using discrete test
points [4]. The literature offers several methods of establishing
GT coordinates of discrete test points:

• Add-on markers: test points are labeled on the floor or
ceiling and the experimenter needs to stand over/under
the mark. While markers can be deployed in any required
spatial configuration and density, this method is appli-
cable only in controlled settings, since adding markers
might not be feasible in public spaces.

• Environmental landmarks: when the environment can-
not be altered to include special markers, one could define
test points by aligning them with generic landmarks in
the environment, such as pillars, floor tiles, doors or
furniture. With the possible exception of floor tiles, spatial
distribution of such features is usually irregular, so the
experimenters have to rely on visual relationships like
“in front of the cupboard, aside of the door handle”. Un-

fortunately, such definitions are open for interpretation,
which can introduce a certain GT ambiguity among team
members. (For instance, which point is the “front” of
a wide cupboard?) In large environments with sparsely
distributed landmarks (such as underground parking lots)
the GT error is likely to increase even further.

• Floor plan. This method, used in the pioneering RADAR
paper [12], allows the experimenter to visit arbitrary
points in the environment and then define the GT lo-
cation by clicking on the corresponding points on the
screen. Floor plan GT is essentially equivalent to the
previous one, as the experimenter still has to refer to the
environmental landmarks for determining their position
in the testbed. Moreover, several other factors — such
as plan’s resolution, zoom level and factual correctness
— can further affect the accuracy. Moreover, choosing
the GT location on a mobile device could be even more
difficult due to the relatively large fingertip covering a
considerable area of the small display (a phenomenon
known as the “fat finger problem” [13]).

As this study focuses on human errors, it is important
to acknowledge the discipline of human reliability assess-
ment (HRA) [14]. The main goals of HRA — namely error
identification, quantification and reduction [14] — are also
addressed in this paper. Although HIPS errors are unlikely to
lead to catastrophic large-scale accidents studied by the HRA,
understanding the limits of human positioning performance is
critically important for the fair evaluation of indoor localiza-
tion systems.

III. METHODS

In this paper we follow the typical evaluation scenario of
a Wi-Fi fingerprinting system: a research assistant equipped
with a smartphone visits a number of predefined test points
and stays in each of them for a while, collecting Wi-Fi RSS
samples.

The key difference of our approach is that the assistant’s
role changes from the all-knowing ideally accurate ground
truth provider into a mere component of a human-based indoor
positioning system, HIPS.

Similarly to smartphones, HIPS features multiple sensors
suitable for localization, including visual, audio and tactile
sensors. In this paper, we focus exclusively on vision-based
HIPS localization using different types of auxiliary references,
namely floor markers, ceiling markers and environmental
landmarks.

A. Ground truth measurements

Since questioning the HIPS performance automatically de-
prives us of a widely used and readily available GT positioning
system, we need an alternative method for indoor localiza-
tion of smartphones. Moreover, in order to qualify as a GT
provider, that alternative system has to significantly outper-
form the HIPS itself. Unfortunately, robotic benchmarking
systems were not available in our lab during this study; in any



case, we expected their performance to be comparable to that
of the HIPS and thus insufficient for an adequate evaluation.

Having no easy automatic solution, we have devised a
manual measurement approach based on a Bosch PLR 50C
digital laser rangefinder [15]. While a participant held the
smartphone in one of the test points, the experimenter mea-
sured the distance between the smartphone and nearby walls
(or windows). For safety reasons, the smartphone was kept
below the eye level, and the participants were asked to turn
their head away from the laser beam during GT measurements.
This was an additional precaution, even though class 2 lasers
(such as the one used in our rangefinder) are considered safe
for accidental exposure because of the natural blink reflex [16].

In addition to the documented accuracy of the rangefinder
(±2 mm [15]), we considered a number of other factors that
could contribute to the measurement error of the GT system.

1) Impact of the measurement on the smartphone position:
While in theory the distance between a smartphone and a
wall could be measured from either direction, estimation
in the phone-to-wall direction would have required physical
contact between the rangefinder and the smartphone. This
way, however, the very procedure of measurement would be
affecting the system under test.

In order to avoid any such effects, we employed a consid-
erably more laborious wall-to-phone measurement approach.
The rangefinder was placed on the wall surface (so that
the laser beam was orthogonal to the surface) and moved
around until the laser spot highlighted the nearest side of the
smartphone. The minimal reading reported by the device was
recorded for further processing.

2) Impact of the measurement on the human participant:
Unlike other indoor positioning systems, HIPS has conscience,
emotions and personal deadlines. Therefore, there was a pos-
sibility that the participants could try to speed up the tedious
measurement process by ‘catching’ the laser beam with the test
smartphone. In order to avoid the additional error introduced
by such a cooperation, the participants were instructed to look
away from the smartphone once they placed it into the test
point.

3) Natural fluctuations of the handheld device: Human
capability of maintaining a stable vertical posture has its
limits even for healthy individuals. In NASA experiments [17],
participants demonstrated 0.82◦ peak-to-peak body sway in
anterior-posterior direction while standing steadily for 21 s,
with eyes open [17, Table 2]. For a smartphone held 1.4 m
above the floor, this corresponds to ±10 mm of sway distance.

As rangefinder measurements were performed for each
coordinate separately and the whole procedure took on average
about 40 seconds, we must expect that the phone position
was changing during the process. Therefore, measured x and
y values do not necessarily mean that the smartphone has
ever been in point (x, y), but rather somewhere within the
10 mm radius from that point. Although the fluctuations occur
in the measured system itself rather than our GT measurement
system, for clarity we still include the ±10 mm error to the
GT system error estimate.

4) Non-orthogonality of the laser beam: If the laser beam
is not exactly orthogonal to the wall surface, the measured
distance could be overestimated, thus increasing the GT mea-
surement error. Assuming that the laser is aligned with the
rangefinder’s enclosure, the orthogonality requirement could
be affected by uneven wall surface.

Local irregularities, such as uneven paintwork, was mea-
sured by placing a 30-cm ruler on the wall in several places;
all imperfections were found to be less than 0.5 mm in
height. Given the device base of 50 mm, that corresponds
to 0.5◦ error. Larger-scale deformations, such as bended or
tilted wall panels, were probed by aligning the laser beam in
parallel with the wall, 5 mm from its surface, and measuring
the position of the laser spot on a small box moved along
the wall. The fluctuations were bounded to 0.1◦ (maximal
lateral shift of 5 mm at 2.75 m distance). Combination of
the local and larger-scale angular errors adds up to ±0.6◦,
which results in up to 10.5 mm/m lateral shift of the laser
spot. However, such a deviation from orthogonality results in
only 0.05 mm/m distance measurement error, or 0.9 mm for
the largest dimension (16 m) of the test room.

Summarizing the above considerations — the ±2 mm
error of the rangefinder, ±10 mm of natural fluctuations
(non-stationarity during the measurements), and approximately
±1 mm of non-orthogonality error — we estimate the accuracy
of our GT measurement system to be around ±13 mm per
axis for localization of a handheld smartphone. For stationary
scenarios, such as localization of markers and landmarks, the
accuracy was about ±3 mm per axis. It should be noted that
both estimates assume that the experimenter is free of error
and all the rangefinder readings are recorded correctly.

IV. EXPERIMENTAL SETUP

The experiment was performed on the premises of the
SnT research centre of the University of Luxembourg, in a
16 × 6 × 2.7 m meeting room. The room featured an extensive
set of ceiling-mounted fire sprinklers, pillars and framed
windows (Fig. 1).

A. Types of references

In this paper, we focus on the following three types of visual
references:

• Ceiling markers represented by fire sprinklers (3 cm in
diameter);

• Floor markers represented by yellow Post-It notes (76×
76 mm) with a cross indicating the center. These markers
were placed approximately under the ceiling markers.

• Environmental landmarks defined as the crossings of
imaginary lines originating from the window frames and
pillars (see Fig. 1 and 2). While three test points were
collocated with the marker-based ones, the other three
were about 30 cm away from the corresponding markers
due to the specifics of room layout (there was no suitable
landmark aligned with markers 2, 4, and 6).



Fig. 1: Experimental testbed.

For each reference type we defined six test points as shown
in Fig. 2. Ground truth coordinates of all the test points were
measured directly regardless of their type.

Fig. 2: Testbed layout. Floor and ceiling markers are labeled
with blue circles. The environmental references are represented
by the green lines aligned with pillars (x-landmarks) and
window frames (y-landmarks); corresponding test points are
labeled by red diamonds. Please note that test points 2, 4
and 6 are different for the marker-based and landmark-based
scenarios.

B. Participants

The experiment was conducted with 7 graduate students
of the computer and natural sciences department. None of
them had previous experience in indoor localization experi-
ments. All the participants were informed about the nature
of the study and instructed to demonstrate their best-effort
performance. The experimental sessions took approximately
one hour per person; each participant received a 20 Euro gift
card of a major online retailer as a compensation for their
time.

C. Procedure

The experiment was divided into three parts, by the refer-
ence type. The phases were randomly ordered for each partic-
ipant; this was done to reduce the possible unfair advantage
of the first tests and to distribute the impact of fatigue evenly
across all the reference types. In each phase, the participants
visited all the six test points in a predefined order, using only
one type of references (adherence to this rule was monitored).
This procedure was repeated three times in order to estimate
the repeatability (dispersion) of the HIPS localization results.

After being equipped with a turned-off LG Nexus 5 smart-
phone, each participant was instructed to hold the device
vertically and to bring it into the test point location as
accurately as possible, so that the center of the device would
align with that of the test point. Once the participant was ready,
the experimenter moved around the room and measured the
distances from the nearest walls, windows or pillars to the
test smartphone.

Since Wi-Fi fingerprinting systems typically focus on 2D
localization, the distance to the floor was not predefined.
Instead, the participants were asked to choose a comfortable
height and maintain it throughout the study. Although height
measurements were foreseen by our initial plan, they proved
to be rather awkward in practice and were left for future work.

V. RESULTS

This section presents the results of experimental evaluation
of HIPS localization performance with different types of
visual references. Overall, we collected 378 measurements
(7 participants × 3 reference types × 6 test points × 3
repetitions).

Besides the traditional cumulative distribution function
(CDF) of the error distance, we were also interested to estimate
HIPS stability – that is, the human ability to consistently revisit
the same test point in repeated measurements. The correspond-
ing metric of spatial dispersion is called the standard distance
deviation (SDD), which is defined as [18, Eq. 8.7]:

sdd =

√∑
(xi − x̄)2

n
+

∑
(yi − ȳ)2

n

where n = 3 is the number of measurements, x̄ and ȳ are
coordinates of the mean center of all the three measured points:

x̄ =
1

n

n∑
i=1

xi; ȳ =
1

n

n∑
i=1

yi

In other words, SDD is the average distance between the
measured points and their mean center. This metric was cal-
culated independently for each test point and each participant.
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Fig. 3: HIPS positioning performance using ceiling markers
(all participants).
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Fig. 4: HIPS positioning performance using floor markers (all
participants).

A. Ceiling markers

Fig. 3 shows the HIPS localization performance when using
ceiling markers. The median error was 8.9 cm, while the 95th

percentile error reached 18 cm. The maximal observed error
among all the participants and all the test points was 22 cm.
In 95% of the measurements, standard distance deviation was
within 5.8 cm.

B. Floor markers

Floor markers proved to be slightly more reliable than the
ceiling ones: the median error was only 7.1 cm, and the
95th percentile of the error decreased to 15 cm (Fig. 4).
Standard distance deviation was less than 6.0 cm in 95% of
the measurements. The accuracy was comparable among all
the test points.

C. Environmental landmarks

Environmental landmarks resulted to be the least reliable
type of visual references: while the median error was only
1 cm larger than that of the ceiling markers (9.9 cm vs.
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Fig. 5: HIPS positioning performance using environmental
landmarks (all participants).
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Fig. 6: Localization error of landmark-based HIPS in different
test points.

8.9 cm), the 95th percentile of the error increased to 28 cm.
The ambiguity of landmark references also showed in the
slightly increased spatial dispersion: SDD value was within
7.0 cm for 95% of the measurements.

In contrast to the marker-based references, localization per-
formance of landmark-based references widely varied among
the test points (Fig. 6). As one could intuitively expect, the
error depended on the distance to the landmarks. For instance,
points 2 and 4, which are away from both x and y landmarks
(see Fig. 2), were associated with the highest errors; in turn,
significantly smaller errors were made in test point 5 which
was only 70 cm away from either landmark.

D. The human factor

In contrast to more conventional positioning solutions, HIPS
is an extremely complex system with a vast set of internal
and external parameters, such as mood, spatial awareness and
physical shape. While in some cases the offered reward might
have motivated the participants to enlist for the study, it could
not guarantee their best-effort performance.
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Fig. 7: Localization error per person.
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Fig. 8: Personal precision.

Personal results of the volunteers (presented in Fig. 7 and
8) demonstrate a considerable variation of HIPS performance
on person-by-person basis. For instance, participants 4 and 6
demonstrated an impressive, better than 2 cm, repeatability
in marker-based tests (Fig. 8). On the other hand, the average
error of participant 2 in the floor-marker test was almost twice
higher than for the rest of the group (13 cm vs 7.2 cm)
(Fig. 7). However, since controlling the psycho-physiological
parameters was beyond the scope of this study, we cannot offer
a plausible explanation for the observed differences.

Another difference of the HIPS from automatic systems is
that HIPS is prone to fatigue. One-hour long experimental
sessions proved to be rather tiresome for everyone involved.
This could have been aggravated by the fact that the use of
personal mobile devices was banned during the study in order
to minimize distractions. Four participants asked if they could
use the test or a personal mobile device for entertainment
during the experiment. One participant reported entering a
trance-like state during the series of repeated measurements.
Another one asked for background music.

Obviously, we cannot generalize the experience based on
a group of seven people to the whole population of research
assistants. However, these observations represent the experi-
mental evidence that in separate cases research assistants might
attempt multitasking, possibly affecting the data collection
process. This possibility should be taken into account by the
team leaders who might want to advise their assistants on the
range of acceptable entertainment activities.

VI. DISCUSSION AND CONCLUSION

The results of the study confirm the centuries-old observa-
tion attributed to Seneca the Younger: “errare humanum est”
(“to err is human”). The localization accuracy of HIPS is far
from perfect, depends on a range of uncontrollable factors and
varies from one person to another.

In particular, HIPS performance depends on the type of
the visual references used for positioning. In our tests, the
participants fared best with what was below them (floor
markers), slightly worse with what was above them (ceil-
ing markers) and worse of all — with what was around
them (environmental landmarks). Indeed, dedicated floor and
ceiling markers resulted in better accuracy and repeatability
than generic landmarks of the indoor environment. While the
obvious suggestion would be to always establish the ground
truth using add-on markers, this may not be feasible in public
or thoroughly cleaned places. In such cases, environmental
landmarks remain the only option for establishing the ground
truth. Nevertheless, it is important to understand the limitations
of the landmark-based GT and place the evaluation points near
the landmarks whenever possible.

While our experimental setup with six well-separated and
distinct test points was rather lightweight, more realistic sce-
narios involve more test points with higher spatial density. As
a result, tracking the progress of the data collection becomes
challenging and HIPS can accidentally skip a point or confuse
the order of test points. While these types of human mistakes
were outside the scope of this study, they may result in even
larger GT errors.



A possible approach to improve the quality of human-
based ground truth is to provide the data collecting person
with inexpensive consumer-grade laser rangefinders. With this
approach, coordinates of the test points can be defined and
recorded as a set of distances to nearby landmarks, and the
person would be able to easily place the test device exactly into
the required location. This approach might also improve GT
data consistency in multi-person and long-term experiments.

One of the lessons learned from the Microsoft Indoor
Localization Competition 2014 was that “not all evaluation
points are equal”: some test points are easier to localize
accurately than the others [5]. Tens of centimeters of HIPS
errors observed in our study can easily be the difference
between an ‘easy’ and a ‘difficult’ point, and the performance
of the tested system can be severely underestimated. Therefore,
it is important to understand the significance of adequate
ground truth measurements and to provide comprehensive
information on the used ground truth estimation methods in
the future publications.
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