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ABSTRACT
The increasing accuracy of indoor positioning systems re-
quires an appropriately accurate evaluation, which com-
pares system outputs with the known coordinates of test
locations — the ground truth. Although ground truth
data are rarely (if ever) tested, they are traditionally
assumed to be perfectly accurate. However, even small
errors introduced by inaccurate ground truth need to be
taken into account for fair evaluation and comparison
between modern high-resolution positioning systems.

In this paper we analyze the quality of ground truth
data provided by clicking on an interactive floor plan (a
method employed by such classical systems as RADAR
and Horus). Experimental results show that this method
has high precision but low accuracy, and high systematic
errors make it unsuitable for evaluation of fine-grained
localization systems.
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INTRODUCTION
With the advance of indoor positioning research, state-
of-the-art systems start to surpass the 1-meter accuracy
milestone and accuracies of the best systems differ only
by few centimeters [3]. At this scale, benchmarking re-
sults and comparative rankings can be influenced by the
fine nuances of the evaluation methodology — in partic-
ular, by the quality of the ground truth data.
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Ground truth (GT) is critically important for evalua-
tion of indoor positioning systems, as their performance
is measured by the differences between the GT and
the system outputs. In automated tests, GT is pro-
vided by robot-based benchmarking platforms with well-
documented accuracy [18, 7, 12]. More commonly, how-
ever, benchmarking is performed manually: an experi-
menter brings the test device into predefined locations
as accurately as possible [14], or carries it around the
testbed, providing the GT by marking their current po-
sition on an interactive floor plan.

While floor plan based GT has been widely used in
experimental practice (for instance, in the classical
RADAR [6] and Horus [20] papers) the accuracy of such
GT data is unknown. This is a critical knowledge gap,
since only few centimeters distinguish an award-winning
and simply very good system, and this difference could
be easily introduced by inaccurate GT. Thus, under-
standing the limits of the GT measurement methodology
is crucial for adequate evaluation of indoor positioning
systems.

This paper provides an evaluation of the errors of floor
plan based ground truth. In particular, we experimen-
tally quantify the human ability to accurately and con-
sistently pinpoint indoor locations on an interactive floor
plan. We distinguish the systematic and random error
components in repetitive tests, and report them both in
terms of physical and screen space.

BACKGROUND
Evaluation of indoor positioning systems includes an
analysis of the system outputs with regard to the true
position of the test device. The procedure can be an
automatic or a manual one, depending on who or what
moves the test device between the test points or along
the test paths.

Automatic benchmarking solutions, powered by robotic
platforms, acquire the GT data from robot’s high-
accuracy reference positioning system. Examples of
such platforms include EVARILOS [18], RAWSEEDS [7]
and ALPS [12]. Their GT accuracy is usually well-
documented, with average errors in the range of 15 to
25 cm [14].
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Figure 1. Experimental testbed. Numbered test points are defined by the virtual grid (red dotted lines) aligned with
the environmental landmarks (pillars and window frames, indicated by blue arrows). Only the landmarks were present
in the testbed, the test points were not marked. (Please note that the straight grid lines are displayed bent due to the
perspective distortion of the photo.)

Manual evaluation, in turn, is performed personally by
the experimenters and represents the de facto standard
of the evaluation procedure. Since the task requires more
time than expertise, it is typically delegated to students
or research assistants. Unfortunately, the accuracy of
such human-defined GT is not well documented [14].
Even worse, it is rarely even taken into account: ex-
periment descriptions either provide ballpark estimates,
assume the GT error to be negligible, or even omit the
GT methodology altogether [4].

The quality of user-provided spatial data has previously
been discussed in the context of geographic informa-
tion systems [8]. However, in this paper we focus on
a smaller-scale scenario, exploring the human limits of
floor plan based localization in indoor positioning exper-
iments. This issue has recently been addressed in [14],
where the author took a mechanistic perspective on
the experimenters, evaluating them as a “human-based
indoor positioning system” [14]. The study analyzed
the positioning performance of people with a handheld
smartphone, measuring their ability to place that smart-
phone exactly into the test location defined by visual
clues such as floor markers, ceiling markers and environ-
mental landmarks. The paper reported absolute errors
of 22 cm for markers and 36 cm for environmental land-
marks.

This work extends [14] and focuses on interactive floor
plans — another method of defining the GT, which has
been used in evaluation of such systems as Horus [20],
RADAR [6] and Zee [15]. There, the experimenters
moved the test device inside the indoor environment and
periodically labeled their GT location on a computer-
based floor plan. Unfortunately, information about er-
ror characteristics of the floor plan based GT is currently
limited to the following estimate of the Horus’ authors:
“We expect an error of about 15–20 cm due to the inac-
curacies in clicking the map.” [20].

The following sections address the gap and provide an
analysis of the floor plan based GT error characteristics,
based on empirical data.

EXPERIMENTAL SETUP
The experiment has been conducted in a 16 × 6 m con-
ference room shown in Figure 1. We specified six test
points located in the nodes of the virtual grid defined by
building pillars and window frames (see Figure 1).

The floor plan of the environment was scaled and rotated
to align with the satellite view of the building and aug-
mented with the pan-and-zoom functionality provided
by the Leaflet library [5]. This interactive floor plan
was displayed on a MacBook Pro (Retina, 13-inch, Early
2015) laptop as shown in Figure 2. By default, the com-
plete floor plan was visible on the screen at the scale of
1:108 (1 cm of the screen displaying 108 cm of the testbed
space, or about 1.2 cm of testbed space per pixel).

Figure 2. User interface screenshot.

Interaction with the floor plan was performed using the
laptop’s touchpad. The laptop-based setup was chosen
instead of a more modern touchscreen interface in or-
der to provide pixel-perfect pointing and to reduce in-
put errors [9] (in particular, those introduced by the
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so-called “fat finger” problem [16]). While the point-
ing accuracy could be further improved by mouse-based
interaction [10], mouse manipulations require a suitable
flat surface which is typically not available during the
localization experiments.

The participants — seven graduate students with com-
puter science background — were instructed to mark the
locations of test points on the floor plan using the lap-
top’s touchpad. All the volunteers were informed about
the purpose of the study and were asked to show their
best-effort performance. Each participant completed
three passes over the testbed, thus providing three esti-
mates for each point. None of the participants changed
the default zoom level of the floor plan (despite being
explicitly advised about the possibility), likely because
zooming in would hide some of the visual references (in
particular, window frames) beyond the screen bound-
aries.

Ground truth positions of the test points within the
testbed were established using laser rangefinder [1]; the
calculated distances enabled us to identify test points’
locations on the floor plan with a pixel-level accuracy
(that is, with 1.2 cm granularity). Both GT and partic-
ipants’ inputs were recorded using the WGS-84 coordi-
nate system [2] with 7-digit precision, which allows for
1.1 cm spatial resolution. Distances between the coor-
dinates defined in WGS-84 system were calculated us-
ing Karney’s geodesic method [11], which provides sub-
millimeter accuracy. Combining the above factors —
±0.2 cm rangefinder error, 1.2 cm floor plan granularity,
and 1.1 cm coordinate system resolution — we estimate
the GT error to be within 2.5 cm.

RESULTS
Positioning error of all the participants is shown in Fig-
ure 3. Only half of user estimates were within 40 cm
from their true coordinates (3.7 mm on the screen), while
95% of the clicked points were up to 91 cm away, and
the maximum error reached 109 cm (8.4 mm and 10 mm
on the screen, respectively).

A closer look into the performance of each participant
reveals the importance of the personal factors (see Fig-
ure 4). Since we could not control such parameters
as spatial awareness and attention level of the volun-
teers (beyond asking them for a best-effort performance),
there were significant differences between their personal
results (p < 0.01 in Welch’s t-test [19] used throughout
this section).

As any measurement error, the errors reported so far
can be divided into two components: systematic error
and random error [17]. The systematic error reflects
the accuracy of the user input, that is the difference be-
tween the mean of the user-provided estimates and the
true coordinates. The random error, in turn, reflects the
precision (spread) of the user input, — that is, the par-
ticipant’s ability to consistently click the same point in
repeated tests. This value is estimated as the standard
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Figure 3. Positioning error of all the participants.
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Figure 4. Positioning error of each participant.

distance deviation (SDD), that is the average distance
between the three estimates and their mean [13, Eq. 8.7].

While the distribution of the systematic error (shown in
Figure 5) was similar to the general error distribution
(Figure 3), the random error component was much more
constrained. Indeed, according to Figure 6, most of the
participants were consistent in their estimates: in 95%
of the cases the SDD was below 19 cm (1.8 mm on the
screen).

Interestingly, the spreading of user estimates signifi-
cantly varied among the test points (Figure 7): the
random error in points #2 and #4 was significantly
(p < 0.01) higher then in other points. This can be
explained by the fact that points #2 and #4 were away
from the visual references defining the test points (pil-
lars and window frame). At the same time, there were
no significant differences (p > 0.01) in systematic errors
between any of the test points.
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Figure 5. Systematic error component — all participants.
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Figure 6. Random error component — all participants.

Limitations
There are a number of factors that limit the general-
ization of the reported results. Firstly, our experiment
was performed with a limited number of participants
in a small-scale testbed. Secondly, the input method
(touchpad) was assumed to be error-free. Finally, the
actual error values heavily depend on the specific details
of the specifics of the experimental setup, such as input
method, display (size and resolution), and floor plan it-
self (its type, resolution, level of detail and even factual
correctness).

For instance, augmenting the floor plan with auxiliary
markers (such as coordinate grid) might considerably im-
prove the accuracy of GT data. However, since detailed
analysis of these factors was beyond the scope of this
short paper, their impact on the GT error remains open
for future work.
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Figure 7. Random error (precision) for each test point.

CONCLUSION
We evaluated the quality of indoor positioning ground
truth data based on an interactive floor plan. The re-
sults suggest that the experimenters struggle to correctly
identify real-world test points on a floor plan: in our ex-
periments, median systematic error reached 0.4 m, while
its absolute values sometimes exceeded 1 m (3.4 mm and
10 mm on the screen, respectively). Nevertheless, the
participants were surprisingly consistent in clicking the
same locations in repeated test (95% of deviations were
within 1.8 mm on the screen).

We conclude that such a high systematic error consider-
ably limits the applicability of floor plan based ground
truth methodology, making it suitable only for evalua-
tion of coarse-grained positioning systems.
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