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Abstract—This work-in-progress paper presents a method for
precise small-scale localization using the “inverse compass”
approach, where stationary magnetometers track the loca-
tion of a mobile permanent magnet. While current indoor
localization systems strive to achieve sub-meter localization
performance in rooms and buildings, we highlight the need
for a centimeter-level precise localization systems, even with
a limited coverage. Experimental evaluation of a prototype
system demonstrated 3.4 cm median 3D localization accuracy
within the 20x20x10 cm test space.

1. Introduction

The majority of indoor positioning research focuses on
providing reliable and accurate localization performance at a
scale of a building or an apartment [1]. Typical radio-based
systems provide an accuracy of few meters [1], which is
sufficient for room-level indoor navigation and general con-
text awareness. However, a number of areas would benefit
from more precise localization techniques, even if at smaller
scales. Cooking, grooming and gesture-based interactions
are some examples of activities which are performed in
bounded areas which require precise centimeter-level motion
tracking.

Currently these activities can be monitored using video-
based approaches [2], [3] which are computationally ex-
pensive, sensitive to illumination conditions and may raise
privacy concerns [4]. Wearable sensors can provide informa-
tion about limb motion (acceleration, direction), but not an
absolute position in space. Finally, RFID readers can detect
presence of RFID tags in their vicinity, but such localization
is often too coarse for the mentioned use cases.

This paper explores precise small-scale positioning using
magnetic fields. We employed stationary digital magnetome-
ters in order to estimate the location of a permanent magnet,
which can be attached to any non-magnetic object (for in-
stance, a magnetic ring on a finger). In this setup, the mobile
part does not require batteries, while stationary magnetome-
ter sensors are cheap, power-efficient and fundamentally
unable to invade user’s privacy. Experimental evaluation of a
simple geometric localization algorithm demonstrated few-
centimeters accuracy with minimal computation.

The rest of the paper is organized as follows. The next
section provides an overview of related work. Then, we

introduce our approach, present the hardware prototype and
results of its experimental evaluation. The paper concludes
with a discussion of the advantages and limitations of mag-
netic tracking, and an outline of the future work.

2. Related Work

Small-scale tracking of motion and human activity have
previously been addressed by computer vision, wearable
sensors and RFID technology.

Computer vision is widely used for object tracking
and recognition of human activity from hand gestures to
general daily tasks [5]. Due to the algorithmic complexity
of the task, the objects of interest are often tagged with
color markers (such as colored glove [6]). The advance of
consumer-grade depth-sensing cameras (such as Microsoft
Kinect) enriched the researchers with a new dimension for
sensing. Such 3D cameras have been successfully applied
to hand tracking [7], sign language recognition [6], and
tracking of cooking activities [3].

Vision-based methods can achieve sub-millimeter pre-
cision of contract-free tracking (for example, Leap Motion
controller [2]). However, there are a number of limitations
restricting their use in ambient sensing. The cameras need
to have a clear view of the tracked area, preferably at a
fixed view point with static lighting conditions [5]. Video
processing algorithms are resource-intensive and thus are
not suitable for battery-powered sensor nodes. Finally, video
cameras can be a threat to personal privacy (or at least per-
ceived so), which limits their adoption in smart homes [4].

Alternative approaches to small-scale activity monitor-
ing employ wearable sensors and RFID tracking. Typically,
RFID tags are attached to the objects of interest, whereas
the user wears a glove [8] or a bracelet [9], [10] with
inertial sensors and an RFID reader. Such a setup makes
it possible to recognize when the user holds an object,
as well as some manipulations performed with the latter.
Unfortunately, current wearable devices have rather limited
battery life and thus require daily recharging which may not
be feasible in assisted daily living scenarios.

Another research direction focuses purely on RFID-
based localization [11]. In contrast to the video-based meth-
ods, RFID readers do not require line of sight and can
identify multiple tags simultaneously. However, since RFID



localization works by detecting the presence of tags within
the reader’s antenna field, the localization accuracy of such
systems is limited by the spatial density of reader antennas
which is in turn limited by relatively high costs of the
readers.

Magnetic tracking has been introduced as a method
for interaction with mobile devices [12], [13]. Recently,
magnetic tracking has been proposed as a method for larger-
scale indoor activity monitoring with multiple magnetometer
sensors [14]. This paper extends [14], moving from coarse-
grained detection of magnetic fluctuations around sparsely
distributed sensors towards fine-grained magnetic localiza-
tion using closely collocated magnetometers.

3. Small-scale magnetic positioning

The proposed approach elaborates upon the “inverted
compass” concept presented in [14]. The concept enabled
coarse-grained localization and activity detection using a
wearable permanent magnet and several magnetometer sen-
sors embedded into the environment. When the user passed
near one of the sensors, the latter could detect magnetic
fluctuations and thus the user’s presence. In the present
paper, we go further and explore fine-grained localization
using actual field strength values reported by collocated
magnetometers.

In order to simplify calculations, we made a number of
strong assumptions. Firstly, the magnet is considered to be
negligibly small in comparison to the compass-to-magnet
distances. Secondly, physical dimensions of the compasses
are also considered to be negligible and their technical char-
acteristics to be the same. Finally, we kept the the magnet
at a distance from the sensors in order to avoid strong
saturating fields and possible permanent magnetization of
the devices [15, p. 11].

3.1. Physical background

The intensity of a magnetic field H produced by a
magnet at a distance d is inversely proportional to d3 [15,
p. 5]:

H ∼ M1

4πµ0d3
(1)

where M1 is magnetic moment of the magnet and µ0 is the
permeability of vacuum.

Magnetic sensors [16], in turn, measure the magnetic
flux density B = µH , where µ is the magnetic permeabil-
ity [15, p. 10]. Assuming that the environment, sensors and
the magnet do not change, we can combine all the constants
into one coefficient β, and express the distance from the
readings bx, by, bz of a three-axis sensor:

d = β
1

3
√
B

= β
1

6

√
b2x + b2y + b2z

(2)

Since all the compasses are assumed to be the same, the
value of β depends only on the specific setup and can be

Figure 1. Sensor setup layout. Green squares represent magnetometers, red
ring represents the magnet.

calculated using the calibration procedure described below
(see Section 3.3).

The sensors are located in the corners of a rectangular
area with known dimensions (Figure 1). After trivial geo-
metric transformations, one can express the coordinates of
the magnet (x, y, z) using its distance to each compass (di).

x =
d21 − d22 +W 2

2W
(3)

y =
d22 − d23 +H2

2H
(4)

While these equations include only sensors 1 to 3, similar
expressions can be easily derived for any other combina-
tion of three sensor. These are omitted here due to space
limitations.

In turn, z can be further inferred using 2D coordinates
and distance to one of the compasses:

z =
√
d22 − x2 − y2, or (5)

z =
√
d21 − (W − x)2 − y2, or (6)

z =
√
d23 − x2 − (H − y)2, or (7)

z =
√
d24 − (W − x)2 − (H − y)2 (8)

3.2. Ambiguity resolution

Despite the initial assumptions, in real world magne-
tometer measurements are subject to noise and have limited
resolution. This leads to discrepancies in measured di dis-
tances, so that different combinations of compasses result
in different calculated position. Due to the inverse cubic
relationship presented in Equation 2, distance estimates are
more reliable in proximity to the sensor.



Considering the above, conflicting coordinate estimates
from Equations 3 and 5 are combined using weighted aver-
age of the candidate values, with weights defined as 1/di,
so that more reliable readings are given more weight.

3.3. Calibration

The calibration is performed in two steps. First of all,
we take into account background magnetic fields, such as
the planet’s own field and local magnetic anomalies. In this
phase, the magnet is taken away and all sensor readings are
recorded as the initial bias value. This value will then be
removed from all future raw readings.

Then, the system evaluates the value of β for the given
setup. The magnet is placed in the center of the monitored
area, in-plane with the sensors. Since both ground-truth
location of the magnet and sensor readings are known,
the calibration constant β can be easily inferred from the
Equation 2. In contrast to our initial assumption, these values
slightly differ between sensors, so the common constant is
calculated as the average of the candidate values.

4. Experimental evaluation

This section presents the prototype system, experimental
setup and performance evaluation results.

4.1. Prototype

The proposed approach has been evaluated with a
custom-built hardware prototype made from off-the-shelf
electronic components. Initially we used three digital mag-
netometers HMC5883L [16], since theoretically three sen-
sors are sufficient for 3D localization (see Equations 3
and 5). However, early experiments demonstrated accuracy
degradation in the area without a sensor, so we added the
fourth magnetometer. Due to logistic reasons, it was an
LSM303DLHC [17] which has the same technical char-
acteristics as the HMC5883L, but features an additional
integrated accelerometer (which was not used in our ex-
periments). As the sensors are controlled via the I2C bus
and have the same address, they were connected to an
I2C multiplexer TCA9548A [18], which was queried by
a Raspberry Pi [19] board running a data collection script
written in Python.

Sensor breakout boards were pinned into a sheet of
foamy plastic and encased into a 1-mm thick cardboard
box (see Figure 2). The layout and dimensions of the
prototype correspond to those shown in Figure 1. The foam
ensured that the sensors are as close to the surface of the
box as possible. The 12-bit analog-to-digital converters of
HMC5883L and LSM303DLHC were configured for 4.0 Ga
range with sensitivity of 440 least-significant-bits (LSb) per
Gauss.

Figure 2. Hardware prototype (opened).

Figure 3. Experimental setup. Magnetic ring is fixed at the required height
using a plastic whiteboard marker.

4.2. Experimental setup

The measurements were performed with a 22-mm mag-
netic ring; due to the generic origins of the sample, its
other technical characteristics were not available. The ring
was fixed on a plastic whiteboard marker, which enabled
us to specify ground-truth 3D location of the magnet with
approximately 5 mm precision.

Before data acquisition, the sensors were calibrated to
remove the influence of background magnetic fields (see
Section 3.3). To avoid sensor saturation, measurements was
confined to the central 200×200 mm square of the prototype
(blue dotted area in Figure 1). Vertical coordinates ranged
from 0 to 100 mm. All measurements were performed along
a 20-mm grid for each coordinate, resulting in 10×10×6 =
600 locations. For each location we recorded raw readings
of all the sensors. Calibration data for the β coefficient (see
Section 3.3) was recorded separately in the beginning of the
session and processed offline during the data analysis.
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Figure 4. Localization performance of the system.

4.3. Results

Figure 4 demonstrates the localization performance of
the 4-sensor setup. Black dotted line is a baseline reference,
representing an algorithm returning random coordinates uni-
formly distributed within the measurements area. Median
error distance in 3D space was 34 mm (50 mm at 95%
level).

Interestingly, the main source of localization error is the
z coordinate (Figure 5). If the z component is excluded
from the error distance calculation, the median error of
the resulting 2D localization system improves from 34 mm
to only 7 mm (17 mm at 95% level), as can be seen in
Figure 4. One might assume that the error increases at higher
z levels, as the magnet moves further from all sensors.
However, Figure 6 demonstrates this is not the case and
the localization error does not have a clear dependency on
the z level. The plot also suggests that the increased 3D
localization error could be attributed to the relatively small
errors in 2D position estimate, which are further “amplified”
by squaring in Equation 5. According to the same equation,
another source of the z error can be imprecise calibration
which results in inaccurate estimation of the distances.

One of the possible ways to reduce the localization error,
especially along the z axis, is to add an off-plane sensor.
While this might not be feasible in some scenarios (for
instance, cooking with sensors beneath the table surface), the
increased accuracy could be beneficial for interaction and
gesture recognition in controlled environments. Performance
evaluation of such a setup is beyond the scope of the
present proof-of-the-concept paper and remains open for
future work.

5. Discussion and Future Work

As any other approach, small-scale magnetic positioning
has its strengths and weaknesses.

On one hand, the limited resolution of the sensors
restricts the maximum operating range of the system to
about 1 m when used with a strong rare-earth magnet [14].
In addition, the magnetometers must be stationary and are
nevertheless susceptible to fluctuations of the background
magnetic fields and high-power electric appliances operating
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Figure 5. Estimated coordinates compared to ground truth values. Dotted
black lines represent ground truth reference.

nearby. Also, in the current implementation, the system can
track only one magnet/object and is fundamentally unable
to recognize its identity.

On the other hand, permanent magnets do not require
batteries and can be integrated into the objects of interest
or safely [20] worn as a ring or a bracelet. Stationary
magnetometers are small, do not require line of sight and
can be easily hidden within the environment. The amount
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Figure 6. Median error for locations at a given Z level.

of data and the processing algorithm are lightweight and
can easily be implemented on an embedded platform. In
contrast to video-based methods, magnetic localization is
fundamentally unable to capture images and thus intrude
user’s privacy. Finally, our method could provide a quick and
simple solution for non-standard scenarios, such as animal
behavior tracking.

While the coverage area of the presented system is rather
limited, it can be increased by installation of additional
sensors. The system naturally integrates with the larger-
scale magnetic localization system presented in [14]. We are
currently evaluating the scalability and performance limits
of the system and exploring possible applications in ambient
interaction and augmented reality.
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