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Abstract—While indoor positioning systems aspire for higher
accuracy, their coverage is typically limited to buildings with
dedicated hardware. A possible alternative is offered by
infrastructure-free positioning methods. In particular, several
studies have demonstrated feasibility of indoor positioning
using broadcast FM radio signals, which are available in most
populated areas worldwide. However, previous work provides
little information about long-term performance of FM-based
indoor localization.

This paper presents a longitudinal study of FM indoor
positioning based on received signal strength (RSS) finger-
printing. We evaluate system’s performance on a large dataset
of real-world FM signals, systematically collected in several
large-scale multi-floor testbeds over the course of 9 months.
We also investigate the impact of different classifiers, training
schedules and fingerprint sizes on localization accuracy. The
results demonstrate that well-trained FM-based system can
provide reliable indoor positioning even several months after
deployment.

1. Introduction

Context-aware applications and mobile services need to
know user location, wherever it is. While satellite-based
systems like GPS and GLONASS are globally available
in clear-sky areas, most of indoor positioning systems are
constrained by the required in-building infrastructure — be
it Bluetooth beacons [1], Wi-Fi networks [2], or ultrasound
and ultrawideband transceivers [3], [4]. Inertial navigation,
in turn, is infrastructure-independent, but still periodically
needs an absolute positioning system to reset accumulated
tracking errors [5].

Ambient signals of opportunity — such as commercial
FM radio broadcasts — provide a promising alternative for
infrastructure-free indoor positioning. High antenna eleva-
tions and transmission powers ensure good indoor availabil-
ity over large areas. Due to the relatively long wavelength
(λ = 3 m), FM radio waves are less attenuated by building
materials than Wi-Fi or Bluetooth signals (λ = 12.5 cm).
Moreover, small indoor objects reflect and scatter shorter
Wi-Fi and Bluetooth waves, but are transparent for FM radio
signals. Finally, FM receivers are readily available in many
off-the-shelf smartphones.

A number of previous studies have investigated FM-
based indoor positioning based on received signal strength
(RSS) fingerprinting method [6], [7], [8], [9], [10], [11],
[12]. These works showed that FM localization accuracy
is comparable to that of Wi-Fi based solutions, and the
two technologies can successfully complement each other.
However, the limited duration of these studies provides
little insight into long-term performance of FM-based indoor
localization in changing environment conditions.

This paper aims to narrow the gap between short-term
lab results and practical FM positioning. We present a
long-term experimental evaluation of FM indoor localization
performance in several scenarios, and investigate the impact
of building population on FM signal stability. The results
are based on an extensive dataset of FM signal samples,
systematically collected in several large-scale multi-floor
testbeds over the course of 9 months.

2. Background

FM-based indoor positioning systems typically employ
the RSS fingerprinting method, originally created for Wi-Fi
localization [13]. This approach leverages the fact that RSS
fingerprints — vectors of RSS values from several stationary
transmitters — depend on receiver location. Initially, the
system is trained on a calibration dataset, which provides
an empirical distribution of RSS values in the testbed. After
calibration, the system combines its empirical knowledge
about RSS distribution and machine learning methods to
recognize locations by their fingerprints.

Despite the apparent similarity of localization methods,
FM positioning is fundamentally different from Wi-Fi based
approach. Firstly, FM radio waves are more than 20 times
longer than Wi-Fi waves, and therefore do not interact with
small indoor objects [14]. Secondly, in contrast to the short-
range Wi-Fi signals that travel mainly indoors, FM signals
propagate over kilometers of outdoor landscape, where they
are exposed to environmental factors (such as road traffic or
seasonal foliage). As a result, FM positioning performance
cannot be directly inferred from existing Wi-Fi based results.

First studies of FM-based indoor localization also em-
ployed dedicated short-range FM transmitters [6]. However,
the concept had been soon generalized to ambient FM radio
stations [15]. A detailed investigation of both approaches
was presented by Popleteev in his PhD thesis [8]. The author



(a) Office Building (Floors 0 and 1) (b) Campus Building
(Floors 0 and 1)

(c) Apartment
(Floor 3)

Figure 1. Testbed floorplans (color dots indicate the sampling locations — test points).

TABLE 1. EXPERIMENTAL TESTBEDS AND SAMPLING CHARACTERISTICS.

Testbed Dimensions Number of test points Sampling period Number of sessions Samples collected

Office Building 100× 50 m 33 + 36 + 16 (floors 1, 0, −2) 9 months (Feb–Oct 2016) 17 1445
Campus Building 80× 80 m 13 + 13 (floors 1, 0) 9 months (Feb–Oct 2016) 16 416

Apartment 14× 7 m 37 (floor 3) 3 months (Jan–Mar 2016) 6 222

analyzed fingerprint stability and receiver diversity issues,
and compared RSS fingerprinting performance of FM, Wi-
Fi and GSM signals [8], [10]. Another study, conducted in
a slightly larger testbed (23× 11 m vs 12× 6 m), reported
1.3 m median error in same-dataset (leave-one-out) evalua-
tion scenario [9]. In turn, [10] compared FM, GSM and Wi-
Fi fingerprinting in next-day evaluation scenario, and found
that FM and GSM accuracy decreases in larger testbeds.
Later on, Chen et al. [11] reported 93% room recognition
rate for same-dataset evaluation. However, they noticed that
the accuracy decreased to 87% in “one-vs-many” cross-
validation scenario based on three days in a larger testbed
(shopping mall). Finally, Yoon et al. [12] proposed a method
to facilitate system calibration using propagation modeling
of FM radio signals from known transmitter sites; their
method achieved 6 m average accuracy.

While previous studies focused on general feasibility of
FM-based indoor positioning, the researchers also acknowl-
edged that “localization performance is prone to degradation
due to changing conditions in the environment” [7] and
“temporal variations of the signal signatures can lead to
noticeable degradation of localization accuracy” [11]. In
particular, Matic et al. [7] reported accuracy degradation
over the course of 7 months. Unfortunately, this period was
only sparsely covered by only three datasets (collected in
December, and followed by June and July of the next year).
Chen et al. [11] continuously monitored FM RSS stability
over 10 days, but only in one fixed location.

Overall, long-term performance of FM RSS-based in-
door positioning in changing environments remains an open
question, which is addressed by this paper.

3. Experiment Setup and Approach

3.1. Testbed setup

Due to the unusually long planned duration of the exper-
iment, selecting appropriate testbeds was rather challenging.
We looked for multi-floor buildings with varying human
presence (sometimes empty, sometimes populated), yet ac-
cessible in off-hours. More importantly, all the test points
(sampling locations) should have remained available for
the whole multi-month duration of the study. Additionally,
the look of the experimental equipment and its operator
should not have disturbed people around. As a result, we
have selected two university-owned buildings (Figure 1).
One building featured research and administration offices,
while the other one combined research labs and lecture
halls. These testbeds are further referred to as “Offices”
and “Campus”. Additionally, a private apartment has been
included for small-scale tests.

In each testbed, we defined a number of fixed test points,
focusing primarily on wide coverage of the area. The test
points were initially specified with regard to local landmarks
(e.g. “in front of office 321”) and later established with
centimeter-level precision using laser rangefinders, in order
to ensure consistent ground truth across the sessions [16],
[17]. Main testbed characteristics are summarized in Table 1.

3.2. Data acquisition

Data acquisition has been performed within the scope of
a long-term radio monitoring project [18], which employed
software-defined radio (SDR) receivers [19] to acquire raw
radio-frequency (RF) samples from multiple ambient radio
sources (such as FM and TV stations, and cellular networks).
At each test point, we recorded 2 s of full-band raw FM RF



samples. (However, due to multi-band acquisition, tuning
and storage delays, the process took on average 70 s per
point.) Overall, we performed measurements approximately
bi-weekly and collected 2083 radio samples across all the
three testbeds (see Table 1).

Apart from the radio samples, each measurement session
includes metadata about the environment, such as human
presence in the building (manually specified by the opera-
tor). To avoid radio signal shadowing by the operator’s body,
the receiver was raised above the head level. Moreover,
the operator has always faced the next test point along the
predefined path, so the receiver orientation was consistent
throughout the study. All floors of a specific testbed were
sampled within the same day (one floor — one session) and
in the same order (top to bottom).

It should be noted, that while our radio measurements
have been performed using a professional SDR receiver, the
results are directly generalizable to FM RSS fingerprints
acquired by low-cost USB radio tuners or FM-enabled
smartphones [8], [11].

3.3. Data processing

Collected raw RF samples were preprocessed offline
using GnuRadio toolkit [20]. Each 2 s long sample was split
to 0.2 s chunks, resulting in 10 full-band RSS fingerprints
per point. Active channels with ongoing broadcasts were
detected by the presence of 19 kHz FM stereo pilot.

In addition to fingerprint normalization and k-nearest
neighbor (kNN) classifiers used in the previous studies [7],
[8], [9], [10], [11], we also investigated a more advanced
fingerprint standardization procedure, as well as random
forest and support vector machine (SVM) classifiers [21].

Fingerprint standardization is a statistical method which
involves independent centering and scaling of RSS values in
an active FM channel to zero-mean unit-variance sequence:

x′ch =
xch − 〈xch〉
σ[xch]

where xch is a sequence of RSS values in channel ch, while
〈xch〉 and σ[xch] are its mean and standard deviation. This
approach equalizes the impact of stronger (high-RSS) and
weaker (low-RSS) stations. Moreover, in contrast to simple
min/max normalization, statistical standardization is robust
to occasional outliers.

4. Experimental Results

4.1. Classifier selection

In the first experiment, we compare localization perfor-
mance of different machine learning approaches in order to
choose the most appropriate method for further analysis. In
addition to the kNN classifier with Euclidean and Manhattan
metrics (commonly used in previous studies), we also tested
SVM and random forest algorithms.

For evaluation, we use a leave-one-session-out approach,
where one measurement session is selected for testing, while

TABLE 2. LOCALIZATION ACCURACY OF DIFFERENT CLASSIFIERS,
WITH (WITHOUT) STANDARDIZATION, IN PERCENT.

Testbed kNN (Eucl) kNN (Manh) R.Forest SVM

Apartment (fl. 3) 52.0 (47.7) 51.3 (51.6) 52.2 57.4
Campus (fl. 1) 91.6 (89.6) 95.4 (92.0) 93.7 92.0
Campus (fl. 0) 93.8 (87.2) 94.0 (87.6) 89.9 94.3
Offices (fl. 1) 85.4 (84.7) 86.5 (86.2) 87.6 89.6
Offices (fl. 0) 74.7 (69.2) 74.3 (71.0) 77.9 79.3
Offices (fl. −2) 51.0 (54.0) 51.7 (52.6) 54.4 60.4

Average 74.7 (72.1) 75.5 (73.5) 75.9 78.8

the rest of data are used to train the system. After looping
through all the sessions, the total ratio of correctly recog-
nized test points provides an estimate of the localization
accuracy of the system. In contrast to other performance
metrics, such as median error distance, classification accu-
racy does not directly depend on the distance between test
points and thus is more appropriate for our diverse testbeds.

The results are presented in Table 2. On average, fin-
gerprint standardization improves kNN accuracy by several
percents. The other two classifiers, in turn, are indifferent to
the procedure — either by design (random forest) or because
they always perform standardization internally (SVM).

Among the tested classifiers, kNN with Euclidean metric
showed the lowest average localization accuracy (74.7%),
followed by kNN with Manhattan metric (75.5%) and ran-
dom forest (75.9%). The highest average accuracy of 78.8%
was demonstrated by the SVM; this classifier is used in all
further experiments.

4.2. General performance evaluation

In this section we evaluate general performance of the
system in two extreme scenarios: with minimal and with
maximal training. In both cases we leverage the leave-
one-session-out approach described in the previous section:
measurement sessions are taken one by one and compared
to the rest of data. In the one scenario, the system is
trained on multiple sessions and tested on the selected single
session (“maximal training”); this provides an optimistic
performance estimate of a well-trained system. In turn, in
the “minimal training” scenario the system is trained on a
single session and tested on the rest of data; this provides a
lower-bound estimate of system performance.

As the evaluation procedure iterates through all the
sessions, we calculate localization error distances for every
fingerprint in each test. In the final step, cumulative distribu-
tion function (CDF) plot of all the error distances provides
an overview of general system performance.

The results are shown in Figure 2.
In the small-scale Apartment testbed, only 57.4% of

test locations were correctly recognized despite the maximal
training (and only 33.7% with minimal training). However,
due to the spatial correlation of RSS values in densely placed
test points, 90% of position estimates were still within 4.1 m
from the ground truth (5.2 m with minimal training).
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Figure 2. General localization performance.

In the large-scale testbeds, with larger distances between
test points, the system showed higher localization accuracy.
In particular, even with the minimal one-session training
the system recognized 68.6% and 69.1% of test points in
the Campus testbed (on floors 1 and 0, respectively). With
maximal training the results increased to 92.0% and 94.3%
(see Figure 2b).

The Offices testbed, in turn, demonstrated a rather sur-
prising dependence of localization accuracy on the floor
number (see Figure 2c). With maximal training, the accuracy
varied from 89.6% to 79.3% and 60.4% on floors 1, 0 and
−2, respectively (58.5%, 43.7%, and 32.0% with minimal
training).

A closer analysis explains this dependency by the dif-
ferent number of active FM channels available at each floor
(Figure 3). Indeed, as Floor 1 is higher above the ground,
it is less shadowed by nearby buildings; on this floor we
detected on average 24 active FM stations. In contrast, the
underground parking on Floor −2 proved to be a particularly
harsh environment for RSS fingerprinting: not only there
were only 6 active stations, but the floor was populated with
large metallic objects (cars) which changed their positions
between the sessions.

4.3. Performance over time

Having evaluated the general performance of the system,
we now proceed with an in-depth analysis of how FM
positioning performance changes over time. Since display-
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Figure 3. Localization accuracy on different floors of the Offices testbed
(max training). Each point represents one test session.

ing even aggregated CDFs for the high number of test
combinations is not feasible, in this section we focus on a
single-number metric, namely, the localization accuracy (the
percentage of correctly recognized fingerprints/test points).

First of all, we perform an exhaustive pairwise evalua-
tion, where the system is trained on one session and tested
on another one — for all the possible combinations. As
shown in Figure 4, sessions close in time provide higher lo-
calization accuracy, as indicated by the more saturated color
of the corresponding cells (near the main diagonals). This
confirms that the accuracy of recently calibration system is
likely to be high. However, the figure does not show any
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Figure 4. Positioning performance over time, with pairwise evaluation. Numbers in the cells are localization accuracy in percents. Random-guess levels
are 3% for Apartment, 8% for Campus, and 3%, 3%, and 6% for floors 1, 0 and −2 of the Offices testbed.

consistent gradient of performance degradation. Instead, as
evidenced by eventual blank cells with low accuracy, the
system seems to be more sensitive to specific environment
conditions of the given session pair than to the age of
calibration data.

High sensitivity to session conditions can be addressed
by additional training. In order to test this, we replicate a
practical scenario of incremental training, where the system
is trained on several consecutive sessions and then repeat-
edly tested over the following months.

Detailed results of incremental training are shown in
Figure 5. Here, each row represents an evaluation history
of the system trained on N first sessions and tested on the
remaining ones (in contrast to Figure 4, where each row
corresponds to a single training session). From top to bottom
rows, the system is provided with more and more calibration
data, which improves the localization accuracy.

This improvement is evident in Figure 6, which shows
row-wise averages of Figure 5 — that is, the average accu-
racy of the system trained on N first sessions. As the figure
shows, the results vary among the testbeds. In the campus
building, one additional session almost doubled the accuracy
(see Figure 6b). The Apartment and Offices testbeds, in
turn, required longer training (around five sessions), but also
managed to double the initial results.

Long-term observations of the Campus and Offices

testbeds also show that after some training, system perfor-
mance saturates at a certain level (plateau-like intervals in
Figure 6b and 6c). On Campus testbed, the system achieves
almost perfect accuracy, while for the Offices building the
saturation levels vary by the floor — an effect which is
explained by the different FM reception quality on these
floors (cf. Figure 3).

4.4. RSS stability and human presence

Robust localization performance requires high stabil-
ity of received signals. However, human presence in the
building may dynamically change spatial patterns of RSS
distribution due to wave scattering and reflection by human
body [8], [22]. This section investigates the impact of human
presence on ambient FM signals.

In order to characterize signal stability during a measure-
ment session s, we first center RSS values of each active
FM channel ch and each test point pt in that session, by
subtracting their all-time average across all sessions:

x′s,pt,ch = xs,pt,ch − 〈xs,pt,ch〉
∣∣∣
s

These centered RSS values are then averaged across all the
test points and active channels of the session. This ‘centered
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Figure 5. Positioning performance over time, with incremental training. Numbers in the cells are localization accuracy in percents. Random-guess levels
are 3% for Apartment, 8% for Campus, and 3%, 3%, and 6% for floors 1, 0 and −2 of the Offices testbed.
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Figure 6. The effect of incremental training.

average’ represents the systematic bias of RSS values in the
session:

Xs = 〈xs,pt,ch〉
∣∣∣
pt,ch

In turn, fast random fluctuations of RSS are characterized in
a similar way, by averaging standard deviations of x′ values:

σs = 〈σ[x′s,pt,ch]〉
∣∣∣
pt,ch

The impact of human presence on FM RSS stability is
shown in Figure 7. As expected by the propagation theory,
RSS fluctuations in a populated building are significantly
higher than in an empty one. A notable exception is the

underground parking on Floor −2: although there was very
little human activity, the level of RSS noise has always been
relatively high due to strong attenuation by the ground and
only few detectable FM channels.

Figure 7 also shows slight systematic RSS differences
between sessions. This can be explained by slow large-scale
environment changes, from internal restructuring (building
new walls) to precipitation-caused changes of soil conduc-
tivity around the building. In absolute terms, however, both
random and systematic RSS variations were typically less
than 1 dB, which should not have any significant effect on
the localization accuracy.
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Figure 7. Impact of human presence on FM RSS statistics (Offices testbed).
Each point represents one measurement session.

5. Conclusion

We presented a longitudinal study of FM indoor po-
sitioning system based on RSS fingerprinting. The experi-
ments are based on a large dataset of radio samples, col-
lected bi-weekly over a 9-month period in several testbeds
with different environment conditions.

Our long-term evaluation demonstrates that while instan-
taneous FM localization performance varies due to environ-
ment dynamics, these variations can be substantially reduced
by additional training. For instance, after only two training
sessions, the system correctly recognized on average 70% of
fingerprints over the following 8 months (Campus testbed).
After six more training sessions, the average localization
accuracy surpassed 96%.

Overall, the results show that with sufficient training and
good radio reception, ambient FM signals can provide robust
indoor localization for weeks and months after calibration.
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