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Abstract—The increasing accuracy of indoor positioning sys-
tems makes their evaluation an increasingly challenging task. A
number of factors are already known to affect performance of
fingerprint-based systems: hardware diversity, device orientation,
environment dynamics.

This paper presents a new butterfly-like effect in localization
experiments. The effect is caused by minor ground truth (GT)
errors — that is, small deviations between calibration and
test positions. While such deviations are widely considered as
purely additive and thus negligible, we demonstrate that even
centimeter-scale GT errors are amplified by small-scale radio
fading and lead to severe multi-meter Wi-Fi positioning errors.

The results show that fingerprint-based localization accuracy
quickly deteriorates as GT errors increase towards 0.4 wave-
length (5 cm for 2.4 GHz). Beyond that threshold, system’s accu-
racy saturates to about one-third of its original level achievable
with precise GT. This effect challenges the impact of the already
known accuracy-limiting factors (such as cross-user tests, receiver
diversity, device orientation and temporal variations), as they
can be partially explained by minor GT errors. Moreover, for
smartphone-in-a-hand experiments, this effect directly associates
the evaluation outcomes with experimenters’ diligence.

Index Terms—Indoor localization, small-scale fading, ground
truth, fingerprinting, radio propagation, Wi-Fi butterfly effect,
performance evaluation, experiment design.

I. INTRODUCTION

Due to the wide availability of Wi-Fi infrastructure and
client devices, Wi-Fi fingerprinting represents one of the most
used indoor positioning technology. A number of factors
can affect signal distributions and thus performance of such
systems: user body orientation, environment changes, human
presence and hardware diversity [1]–[3]. These factors are
well-known and their impact can be minimized by performing
the evaluation on the same day, by the same person, holding
the same device in the same way, in the same test points.

However, same-point evaluation is almost unachievable in
practice. Due to the limited accuracy of current ground truth
(GT) methodologies, actual test points can deviate from the
calibration points by centimeters or even decimeters [4]. Given
that typical Wi-Fi positioning errors are orders of magnitude
larger [5], GT errors seem negligible and are generally ignored.

In this paper, we analyze the impact of small GT errors
on the measured accuracy of a fingerprint-based indoor lo-
calization system. By testing the system in slightly different

points than it was calibrated in, we demonstrate that minor
GT errors are amplified by small-scale fading effects [6], and
can substantially degrade system’s accuracy. The contribution
of this study is more methodological than technological, as
we focus on accurate evaluation of localization performance
rather than on methods for improving the latter.

II. BACKGROUND

A. Fingerprint-based indoor localization

Location fingerprinting based on Wi-Fi signals is one of the
most widely used indoor localization approaches. It consists of
two phases. In the calibration (training) phase, the environment
is surveyed to build an empirical spatial model of signal
fingerprint distribution. Here, a fingerprint is a vector of
received signal strength (RSS) or channel state information
(CSI) values received from stationary transmitters, such as Wi-
Fi access points. In the localization (testing) phase, the system
employs the created model and machine learning methods to
identify locations by the fingerprints.

Over the last decades, multiple authors have comprehen-
sively investigated various aspects of fingerprint-based local-
ization. While the efforts have primarily focused on readily
available Wi-Fi infrastructure [7]–[9], fingerprinting has also
been successfully used with broadcast signals of opportunity,
such as GSM [10] and FM signals [11]. A number of methods
have been proposed for reducing the calibration efforts at the
deployment phase, with a particular focus on crowdsourcing-
based techniques [12]–[15]. Additionally, the accuracy of
fingerprinting-based systems have been found to depend on
a variety of factors, including testbed layout, its dimensions,
orientation-dependent signal shadowing by user body, diverse
characteristics of the client devices, and human activity nearby.
A detailed review of current Wi-Fi fingerprinting systems falls
beyond the scope of this paper; a recent survey can be found
in [16].

B. Localization performance evaluation

The wide diversity of experimental conditions and eval-
uation methodologies represents a major challenge for fair
comparison between different localization algorithms. This
issue is currently addressed by formal indoor localization
competitions, where participating systems are evaluated in
the same conditions or on the same datasets [17]–[20]. The978-1-5386-3089-1/17/$31.00 c©2017 IEEE
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Fig. 1. Small-scale fading of Wi-Fi signals. Empirical measurements show
10 dB RSS variations in a 14× 14 cm area sampled with 1 cm resolution.

same objective of fair comparison is pursued by automatic
benchmarking platforms such as EVARILOS [21].

Performance evaluation of a localization system typically
involves comparison of system’s outputs with known ground
truth (GT). However, the latter is also subject to measurement
errors. Such GT errors become particularly important in ex-
periments where the fingerprinting-based system is calibrated
and tested in the same points. In reality, however, these ‘same’
points can deviate by up to several decimeters from their orig-
inal positions, depending on the chosen GT methodology [4].

While such GT deviations are widely considered negligible
in comparison to meter-scale Wi-Fi localization errors, in this
paper we argue otherwise. Due to the specifics of radio wave
propagation, GT errors may result in ‘the same’ point having
very different calibration and testing fingerprints, with adverse
impact on system evaluation results [22]. The next section
provides the physical background of this phenomenon.

C. Spatial variations of RSS

Spatial variations of RSS fingerprints are defined by three
main factors: free-space propagation loss, large-scale fad-
ing and small-scale fading [6]. Free-space propagation loss
(FSPL) describes radio wave propagation as a function of the
transmitter-to-receiver distance, without any obstacles. Large-
scale fading, in turn, relates to shadowing by larger-than-
wavelength obstacles, be it buildings or furniture. Finally,
small-scale fading is caused by multipath propagation, where
radio wave interferes with its own delayed and attenuated
reflections from surrounding objects. The areas of constructive
and destructive interference interleave at approximately λ/2
intervals (where λ is the wavelength), and thus even small
sub-λ movements can significantly change signal reception
conditions (see Fig. 1).

The impact of small-scale fading on indoor positioning
accuracy has been addressed in several Wi-Fi based location
tracking systems (λ = 12.5 cm). One of the first such
systems, Horus, detected the influence of small-scale RSS
variations by rapid changes of the estimated position during
mobile client’s movement through the environment [23]. The

detected variations were mitigated by ‘perturbing’ the finger-
prints; this technique improved the localization accuracy by
8% [23]. Another system, PinLoc [24], mitigated the impact
of small-scale fading on Wi-Fi channel state information
(CSI) fingerprints by collecting rich calibration data inside
1× 1 m patches (‘spots’), rather then in separate points. Lee
et al. [25] proposed an extended Kalman filtering approach
for simultaneous mitigation of RSS variations and position
tracking. Other systems address small-scale fading indirectly,
by filtering out too fast or out-the-map position changes [12].

Notably, all the mitigation methods are designed for po-
sition tracking in dynamic evaluation scenarios, where the
user moves along a predefined GT path. However, multiple
studies employ single-shot positioning, where the mobile
device is evaluated in predefined test points and does not
track transitions between them [26]. As a result, motion-based
detection or mitigation of small-scale fading is not possible,
and performance of the tested localization system theoretically
becomes sensitive to GT precision.

To the best of our knowledge, previous work on fingerprint-
based indoor positioning considered GT errors as purely
additive and thus negligible. In contrast, this paper is the first
detailed investigation of the impact of small GT errors on Wi-
Fi localization performance.

III. SMALL-SCALE FADING AND RSS FINGERPRINTING

Statistical theory of small-scale fading, developed by
Clarke [27], provides analytical expressions for spatial correla-
tion of received signals in environments with isotropic scatter-
ing (with later generalizations to non-isotropic scenarios [28],
[29]). According to Clarke, when a receiver with two antennas
moves through a multipath environment, signal amplitudes
received by the antennas are correlated. For omnidirectional
vertical whip antennas, their normalized covariance is [27,
Eq. 16]:

ρ(d) ∼=
[
J0(

2π

λ
d)
]2

where J0 is the zero-order Bessel function of the first kind, and
d is the distance between antennas. The covariance function,
shown in Fig. 2, has its maximum at d = 0 and gradually
decreases until RSS values become completely uncorrelated
at a distance of about 0.4λ (≈ 5 cm for 2.4 GHz Wi-Fi).

In order to investigate the impact of this spatial correlation
on RSS fingerprints, we experimentally measured Wi-Fi RSS
in a 14 × 14 cm area with a 1-cm grid step. Then we
calculated pairwise Euclidean distances between all the test
points, both in space and fingerprint domains. The resulting
25200 combinations were grouped by spatial proximity d
and averaged. Groups with less than 100 measurements were
discarded in order to reduce statistical noise.

The result, shown in Fig. 3, is well in line with Clarke’s
theory. Indeed, for nearby points (d ≤ 5 cm), even small
movements quickly increase the distance between fingerprints;
a linear fit has a 1.8 dB/cm increase rate. However, beyond the
0.4λ threshold, the impact of small-scale fading decreases and
fingerprint changes are dominated by much slower large-scale
effects (0.3 dB/cm).
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Fig. 2. Theoretical covariance of signal amplitudes received in two points
distance d apart, in a multipath environment [27, Eq. 16].
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Fig. 3. Experimentally measured similarity between Wi-Fi RSS fingerprints
in nearby points (indoor measurements).

As shown above, both theoretical and experimental results
suggest that RSS fingerprints are particularly sensitive to small
sub-wavelength receiver dislocations. The following sections
investigate how such dislocations (in form of GT errors) affect
fingerprint-based Wi-Fi positioning performance.

IV. EXPERIMENTAL SETUP

The experiment is a modification of the classical Wi-Fi
fingerprinting setup with static point-based evaluation. Data
acquisition has been performed in a spacious foyer of an office
building (Fig. 4). We defined 12 test locations, in the nodes
of a 3 × 4 grid with 2 m step. To simulate the effect of
inconsistent GT, each test location featured one central point
and 12 auxiliary points that were 3, 6 and 12 cm away, as
shown in Fig. 5. (The distances roughly correspond to λ/4,
λ/2 and the full wavelength λ of 2.4 GHz Wi-Fi signals.)

In order to distinguish the impact of small-scale fading from
the other interfering factors — such as environment dynamics
(people movement nearby, opening and closing doors) and
shadowing by the experimenter’s body — the experiment
was specifically designed to minimize their influence. Firstly,
data acquisition took place during a weekend (when both the
building and surrounding streets were virtually empty) and the
training dataset was collected immediately after the testing
one. Secondly, the test smartphone was placed on station-
ary tables rather than in operator’s hand; to avoid possible
interference from metallic parts, the tables were improvised

Fig. 4. Experimental testbed.

3 cm

6 cm

12 cm

Fig. 5. Layout of a test location: central test point (red) surrounded with
auxiliary test points (blue).

by empty cardboard boxes. Finally, during the sampling the
operator stepped at least 1.5 m away from the device.

In order to accurately establish centimeter-scale GT dis-
placements, GT positioning was performed in two steps.
Firstly, in each test location we installed a coordinate table
(cardboard box) and positioned it using a laser rangefinder
and dedicated targets placed on the walls. Secondly, the
smartphone was positioned on the table, using one of the 13
test points marked on the latter’s surface. Given the ±2 mm
rangefinder error, the ±2 mm table-in-testbed alignment error,
and the ±1 mm smartphone-on-table alignment error, the
absolute GT error was ±5 mm per axis, while GT deviations
between the two datasets were within 2.8 mm (±2 mm per
axis).

RSS fingerprints were collected by a Motorola Moto G
smartphone running Android 4.4 OS. At each test point the
device collected 20 Wi-Fi RSS fingerprints. Wi-Fi access
points that were not available in some locations, as well as
those with highly correlated RSS values (that is, collocated),
were excluded from further processing.

Finally, the actual localization — identification of test point
by signal fingerprints — was performed by three machine
learning algorithms, including k-nearest neighbor (kNN), sup-
port vector machine (SVM) and random forest (RF) classifiers.
By default, we report RF-based results, as it demonstrated the
highest average accuracy. However, for completeness we also
include the results of the other classifiers.
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Fig. 6. Leave-one-out positioning performance with different GT errors.

TABLE I
LOCALIZATION ACCURACY (LEAVE-ONE-OUT EVALUATION).

GT error kNN SVM RF

3 cm (λ/4) 42% 41% 46%
6 cm (λ/2) 33% 32% 31%

12 cm (λ) 33% 28% 32%

V. RESULTS

A. Leave-one-out evaluation

Leave-one-out evaluation is widely employed for estimating
positioning performance using a single dataset. There, points
are taken one-by-one and used for testing, while the rest of
the dataset is used for training the system. According to the
main assumption of the fingerprinting approach, fingerprints
of nearby points are more similar than those of distant points.
Therefore, when presented with a test fingerprint, the classifier
should return one of the points nearest to the testing one.

In order to verify this, we divided one dataset into four
subsets with increasing GT error δ, so that in each subset each
test location was represented by the central point and the four
auxiliary points δ cm away from the center. Ideally, when one
of the points is taken for testing, its fingerprints should be most
similar to the nearest points, and the localization error would
thus be limited to δ. The results, however, prove different.

As Fig. 6 shows, with the smallest tested GT error (δ =
3 cm) only 46% of the fingerprints were correctly recognized
as similar to those of nearest points. When the points were
moved further apart, the accuracy further decreased and sat-
urated at 31–32% level. This behavior was consistent across
all the classifiers (see Table I).

The results are consistent with Section III: with larger GT
errors (δ ≥ λ/2) the localization accuracy is relatively low, but
does not depend on δ. When GT error improves to δ = λ/4,
system’s accuracy also improves, confirming that fingerprint
similarity becomes related to the spatial proximity of the test
points.

B. Two-dataset evaluation

While leave-one-out approach is useful for single-dataset
evaluation, it provides a somewhat artificial estimate of the
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Fig. 7. Two-dataset positioning performance with different GT errors.

TABLE II
LOCALIZATION ACCURACY (INDEPENDENT DATASETS).

GT error kNN SVM RF

Precise GT 93% 98% 100%
3 cm (λ/4) 46% 44% 45%
6 cm (λ/2) 32% 30% 29%

12 cm (λ) 30% 29% 33%

system performance. More practical evaluation scenarios in-
volve dedicated training and testing datasets. In this experi-
ment, we simulate different levels of GT mismatch between
the calibration and the testing datasets, when the system is
tested on slightly different points than those used for training.

Firstly, we trained the classifier on the 12 central points of
one dataset. The other dataset, in turn, was divided into four
non-overlapping subsets: an ‘ideal’ one without any GT error
(including only 12 central points), and three imperfect subsets
with increasing GT error (each containing only 12×4 auxiliary
points; the central points were excluded). The analysis was
based on the 19 access points present in both training and
testing datasets.

The results are presented in Fig. 7. With exact GT, the
system correctly recognized 100% of fingerprints, confirming
that our efforts on creating an idealized experimental setup
with minimal interference (see Section IV) were successful.
However, even the minimal 3 cm (λ/4) GT deviation reduced
the recognition rate to mere 45%. With GT errors of λ/2
and higher, only a third of fingerprints were recognized to
their correct test locations (regardless of the GT error value);
the rest of fingerprints were attributed to other test locations
meters away. As shown in Table II, the results were consistent
across different classifiers.

VI. CONCLUSION AND DISCUSSION

In this paper we investigated how minor GT errors (de-
viations between calibration and testing points) affect the
performance evaluation of indoor positioning systems based on
RSS fingerprinting. In contrast to the widespread assumption
that GT errors are purely additive and thus negligible, our
findings demonstrate that small GT deviations may severely
affect the evaluation outcomes.
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In particular, our results — supported by the Clarke’s theory
of small-scale fading [27] and direct experimental verification
— show that with smaller GT errors (δ < 0.4λ), localization
performance directly depends on GT quality and degrades with
the increase of GT errors. Beyond the 0.4λ threshold, in turn,
the localization accuracy becomes insensitive to the increasing
GT error and saturates at a relatively low level (around one-
third of the precise-GT baseline).

For Wi-Fi RSS fingerprinting, this means that even
centimeter-scale GT imperfections may introduce large and
unpredictable localization errors. This phenomenon is sur-
prisingly reminiscent of the butterfly effect from the chaos
theory [30], where small initial disturbances lead to major
differences in final results. Given the context, the main finding
of this study may thus be described as a ‘Wi-Fi butterfly effect’.

While this effect is mainly inherent to single-shot posi-
tioning systems (which cannot mitigate small-scale fading),
it has wide implications on indoor localization research. In
particular, it questions certain findings of previous Wi-Fi
localization studies. Due to the Wi-Fi butterfly effect, the
experimental results of such studies may have underestimated
the actual performance of the evaluated systems — but to
a random degree, depending on the used GT methodology
and even on the personal performance of the experimenters.
Indeed, was system A more accurate than system B, or it was
simply evaluated with a more precise GT method? Was cross-
device fingerprinting performance more affected by different
receiver characteristics or by different antenna placement? Did
localization accuracy degrade over time, or the experimenter
was tired and held the device a few centimeters lower?

Future studies can avoid such ambiguities by reducing the
impact of the butterfly effect. A straightforward solution would
be to employ a highly precise GT methodology (for example,
laser rangefinders and tripods); this would minimize GT errors
and potentially enable the system to demonstrate its upper-
bound accuracy. As an alternative and arguably more robust
approach, one could intentionally define the test points at least
0.4λ away from the calibration ones. In this case, the system
would provide only a conservative lower-bound performance
estimate, but it would be immune to minor GT errors.
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